Behaviour of human heterochromatic regions during the synapsis of homologous chromosomes.

نویسندگان

  • M Codina-Pascual
  • J Navarro
  • M Oliver-Bonet
  • J Kraus
  • M R Speicher
  • O Arango
  • J Egozcue
  • J Benet
چکیده

BACKGROUND Alterations of synapsis can disturb or arrest meiosis and result in infertility. Synaptic abnormalities are frequently observed in infertile patients but also in fertile men. METHODS The subtelomere-specific multiplex fluorescence in-situ hybridization (stM-FISH) has been applied in combination with immunofluorescence to identify all synaptonemal complexes (SCs) and to analyse those presenting synaptic anomalies in fertile and infertile men. RESULTS SCs with heterochromatin blocks other than centromere (noncentromeric heterochromatin) presented a higher frequency of gaps (SC discontinuities) and splits (unsynapsed SC regions) at pachytene, the incidences for 9qh, 1qh, 15p and 21p being the highest ones. Inter-individual variability in the incidence of synaptic anomalies in these regions has been observed. In addition, synaptic anomalies in other SC regions are more frequent in infertile cases than in controls. Clear association of the SC15 and SC21 to the XY pair has been seen. CONCLUSION Noncentromeric heterochromatic regions are the last to synapse. The inter-individual variation observed in the incidence of gaps and splits in these regions may be explained by the heteromorphism of these regions in the general population. The presence of synaptic anomalies in other SC regions may indicate nuclei with a severely affected synapsis. Noncentromeric heterochromatic regions might play a role in the association of autosomal SC15 and SC21 with the XY pair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differing Requirements for RAD51 and DMC1 in Meiotic Pairing of Centromeres and Chromosome Arms in Arabidopsis thaliana

During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of ra...

متن کامل

DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis.

Chromosome pairing and synapsis during meiotic prophase requires the formation and repair of DNA double-strand breaks (DSBs) by the topoisomerase-like enzyme SPO11. Chromosomes, or chromosomal regions, that lack a pairing partner, such as the largely heterologous X and Y chromosomes, show delayed meiotic DSB repair and are transcriptionally silenced. Herein, we review meiosis-specific aspects o...

متن کامل

P-198: Analysis of Expression Level of TEX12 Gene in Testis Tissues of Severe Oligozoospermic and Non-Obstructive Azoospermic Men

Background: During the first meiotic prophase, alignment and synapsis of the homologous chromosomes are mediated by the synaptonemal complex. Incorrect assembly of the synaptonemal complex leads to impaired recombination and cell death, which in humans, causes infertility in males. Testis-expressed gene 12 (TEX12) is a germ cell-specific gene that is located on the chromosome 11 (11q22) in huma...

متن کامل

Topoisomerase II Is Required for the Proper Separation of Heterochromatic Regions during Drosophila melanogaster Female Meiosis

Heterochromatic homology ensures the segregation of achiasmate chromosomes during meiosis I in Drosophila melanogaster females, perhaps as a consequence of the heterochromatic threads that connect achiasmate homologs during prometaphase I. Here, we ask how these threads, and other possible heterochromatic entanglements, are resolved prior to anaphase I. We show that the knockdown of Topoisomera...

متن کامل

High Resolution Analysis of Meiotic Chromosome Structure and Behaviour in Barley (Hordeum vulgare L.)

Reciprocal crossing over and independent assortment of chromosomes during meiosis generate most of the genetic variation in sexually reproducing organisms. In barley, crossovers are confined primarily to distal regions of the chromosomes, which means that a substantial proportion of the genes of this crop rarely, if ever, engage in recombination events. There is potentially much to be gained by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human reproduction

دوره 21 6  شماره 

صفحات  -

تاریخ انتشار 2006